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UDC 539.3:534.1
ENERGY DISTRIBUTION OF A SURFACE SOURCE IN AN INHOMOGENEOUS HALF-SPACE”

E.V. GLUSHKOV

Relations describing the energy flux in an elastic medium in terms of the surface
loads and Green matrix components are used to obtain formulas suitable for deterxmin-~
ing the density of the total amount of energy transported by various type waves
across a horizontal plane, side surface of a cylinder, and surface of a sphere of
large radius. This makes possible the complete determination of the energetic bal-
ance in a vertical inhomogeneous half-space.

When the power from an oscillatory source is transmitted through the earth, it is import-
ant to know the distribution of energy between the elastic, various type waves. The known /1,
2/ relations connecting the energies of the longitudinal, transverse and Rayleigh waves have
been cbtained jor a model of a homogeneous elastic half-space. The inhomogeneity of the earth's
core however stipulates the redistribution of the energy between the various type waves and in
different directions. The same problem is encountered in designing antivibration coatings from
composites, multilayer constructions, acoustoelectronic devices on surface waves, etc. The
present paper deals with the development of the method of its solution.

1. We consider an elastic or viscoelastic inhomogenecus half-space {(—co <z, § K 00, —00 <
7z 0) with depth-dependent properties A=14(z), B=p{)h p=p(). Here p is density, i=23 -Lu,
p=p,+ipy are the Lamé coefficients of the medium and we have A;<CO, gy < 0; 4, = p, = 0 for the elas~

tic medium. The steady state oscillations of the medium v = Re[u*¥] are generated by harm-
onic surface loads t=Re (g™, (z,y) =Q defined in some region Q. Outside Q@ the surface of the
medium is load-free; u(z, y,72),4q(x y) are the complex amplitudes of the displacements and surface
stresses. In the course of investigating the steady state oscillations it is expedient to use
as the measure of change of energy within a volume, its change averaged over the oscillation
period T = 2x/e /3/

T
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tlere E, is the energy within a certain volume of the medium bounded by the surface §, pyp 1s the
enexrgy flux density and ¢ is the complex amplutide of the stress vector, the stresses appear-
ing on the area element with outward normal n to the surface §.

The displacements u of the medium can be expressed in terms of the surface stresses q /4/

n .
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The quantities M, N, P, R,§ are functions of a = V& + &* ¢ and are determined from the
boundary value problems for the systems of differential equations with variable coefficients
in case of continuous and inhomogeneous media or with piece-wise continuous in the case of
multilayered media. The elements of the matrix K are functions regular in a and 1z, have a
finite number of real poles in variable & and an enumerable number of complex poles. The
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integration contours Pl, I'y which coincide almost everywhere with the real axis and deviate
from it only when going around the real poles of the integrand functions, are chosen in ac-
cordance with the principle of limit absorption. The choice of the contours I}, I, and the
properties of K were discussed thoroughly in /4/.

The main difficulty encountered while using the representation (1.2) consists of the fact
that when the properties of the medium depend on the depth in an arbitrary manner, then the
elements of the matrix K cannot be written in an explicit form. Methods for their construc-
tion based on numerical solutions of the corresponding boundary value problems were given
earlier in detail in (*). The stability of these methods is ensured by the preliminary separ-
ation of the exponential and strongly oscillatory terms of the solution in explicit form.

2. Let us denote by S the surface z = const parallel to the surface of the medium and
situated at the depth z. From (1.1) and (1.2), using the Parseval equality and making the
substitution

a;=acosy, a,=asiny; 0{y<{2n, a =T

we obtain

E=%-41TlmSG(a,z)ada (2.1)
T

2

6w 2)= (2 Vydy=
]

Frlp (M + S)M* 4 (A + 2p) S'fa® — AM) S*] 4 FopN'N* +
Fyfo®u (R + P’y P* 4 ((A + 2u) R’ — o®AP) R*} +

Filp (M’ 4 ) P* 4 ((A + 2u) S’ja® — AM) R*] +

Fy [p. (R4 PyM* - (A + 2p) R'ja? ~— AP) 5%

Fi= S Q12012*dy, Fr= S Qn0xn*dy

Fy= S QsQs* dy, S QuQs*dy, Fy= S 0sQ12* dy
O = (%Qx + a,Q)/a?, 021 (0,07 — “102)/“2

Here U, £ is the Fourier transform of uw, ¢. The asterisk denotes complex conjugates, the
conjugate functions have the conjugate arguments a,*, a,*, a* and a prime denotes the deriva-
tives in z. The function G (a,2) is complex valued in some bounded domain of variation of
a and has double poles , on the real axis, distributed to the right of the zone of complex
values. Therefore we can split F into two components

E:E‘7+Ea (2-2)

®
1
EV:%Tn— SG(a z)ada, R=%4—-ZresG(a,z)a|a_;k
2 T

Here % 1s the upper boundary of the zone of complex values; for the homogeneous half-space we
have x = pw%*pu , while for a layer of finite thickness we have x =0 and Ey = 0. Below we
show that Ev is the energy of the volume waves passing across the plane z = const, and Eg is
the energy transported across this plane by the Rayleigh type waves.

Let us turn our attention to the choice of the contour [, using the principle of limit
absorption /5/. We assume that the internal friction in the medium 6 is different from zerc.
In this case the poles § of the elements of the matrix K situated on the positive part of
the real axis when 6 =0, become complex and are displaced into the upper half-plane. One
of the poles &, can also be displaced into the lower half-plane. This occurs in the case of
irregular poles associated with the corresponding "inverse" waves (see /4/). The integrand
function G (a,z)a contains in the neighborhood of some pole t, the terms

e/(e — Ex)y dpfle — E*); e dy = comst

If 050, then G(a, 2) has no real singularities and the contour I coincides with the real
axis. Let O tend to zero by deforming the contour I' at the points of emergence of §, onto

*) Glushkov E.V. and Gluskova N.V.,Calculation of the energy of elastic waves generated by
surface sources in a stratified half-space. Rostov-on-Don, Dep. v VINITI, No.5827-81, 1981.
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the real axis in such a manner, that the pole does not intersect the contour. The contour I
can be deformed since G (¢, z) is an analytic function. The terms of the integrand function
of the form ¢/(e — &) are bypassed by the contour I' from below for the regular poles, and
the terms d,/(a — E,*) from above (&* is displaced downwards) for the irregqular poles the
procedure is reversed. Consequently we have

o 1
=-§-T—Xn,(ck—d,, (2.3)

(fjx =1 for the regular and j; = —1 for the irregular poles). Thus by I we understand a
set of contours, every one of which is chosen separately for different terms of G (a, 2) «.
In detemining ¢ and dy the danger arises of referring the functions of the form (" =
f to the nonconjugated functions. In expanding these functions into the Laurent series, dif-
ferent representations are obtained for the complex ¢, e.qg.
a=E5+ (@ —§), (@ * =5+ (@ — %

(when 860, § and £* are displaced in opposite directions). Therefore the rule (ff)*=/f can-
not be used in the derivation of (2.3) and the all asterisks must be retained to the end. The
representation (2.2) makes it possible to determine the amount of energy of the volume and
Rayleigh waves transmitted from the surface source to the medium, to obtain its distribution
between the different volumes of the medium contained e.g. between the planes z=3z and z=g,
or between the different layers of a multilayer medium, to follow the effect of the properties
of the inhomogeneous medium on the dependence on z of the amount of energy passing across the
plane z = comst, etc.

Numerical computations were carried out with all physical quantities reduced to the dim-
ensionless form. The surface stresses q and Lamé coefficients A, p were referred to the some
characteristic value of the shear modulus of the medium p,, the density p to the character-
istic density of the medium po and the linear quantities to the characteristic linear dimens-
ion e. In this cases the generalized frequency &= wa P/ Vi is used as the frequency and
the forces are given in pga? The energy flux per period T =2/G 1is obtained in terms of the
units Ep= azp.ol’p'/’ and in what follows the bar above o will be cmitted.

Fig.l depicts the dependence of the energy frequency entering the medium from the normal
(subscript :z) and tangential (subscript z) load distributed uniformly over a circle of unit
radius; Ey , Ey , and Ep,, Ep, denote the parts of the energy taken up by the volume and the
Rayleigh waves respectively, The medium is an elastic, two-layer half-space of thickness A=

4. The parameters of the upper layer (medium 1) and lower half-space (medium 2) are A;=0.08,
u=0,08, p, = 0.5 and A\ =10, py = 1, p, = {1 respectively, and this corresponds to the following ratio
of the rates of propagation of the longitudinal ?p; and transverse v, ;(i=1,2) Wwaves:

"s,l 1 ”3.2 1 vp,] 1

%y V3 ”p.z=2;3 ’ Voe 5
The dashed lines in Fig.l denote the energy entering a homogeneous half-space, with the prop-
erties of the upper layer.

Fig.2 depicts the dependence
£ ¢, ‘ N of the energy of the volume and

5 - [ - J Rayleigh waves passing across the
P EHX " Z plane z=const in a five-layer
& ’ s ' . half-space, on the depth :z. The
/ = top layers are of thickness & =1
g == — (i=1,..., 4 and the properties of
v A NN 2 o zE the.layers a&toesrnate (medium 2--th
h , H { \/ T~ NG medium 1) o= 0.5 We see that the
g -l - energy of the Rayleigh waves Zg ,,
- J \/(\ (\ ! N & Ep » diminishes with z since
5 < m ﬂ[\ A 2 J 5 there is an energy leakage in the
71}5“ ! horizontal direction, while the
Z G energy of the volume waves remains
7 i t constant.
0 0.5 1 1.5 w

3. Let S denote the side
Fig.l Fig.2 surface of a cylinder of radius

= Y2 4 y* > 1 contained between

the planes z,, 3, = const

2 270

ER—.S Spgrd(pdz r=rcosg, y=rsing, 0o 2xn (3.1)
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Here pp denotes the energy flux density across the side surface of the cylinder. The displace-~

ments u have the following asymptotic representation (*):

u(z, v, 2)= D™ VT +0(r"), r—>o0 (3.2)
k

a,(z, y,2)= ‘/ —;%:—res K (— acos ¢, — asin g, @, 2) jguy, - Bx
where for the axisymmetric function q(r,y) we have
B, = Q (&)
and for the non-axisymmetric function g (z, y), p=) & + n* we have

By= S Va@meuen)/ -
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From {3.2) we can obtain an asymptotic repzx
the expression (1.1l) for the energy density, by taking into account the relations
IR ~ B WS YK N | 4% JU1 g
u—f k"rU\I ) Up = ayc A i
du . 0 _,,, on 0 (-
=1 ) Lw+ O =) w +O00), rox
k k

The derivatives (u,’) with respect to z of the vector u, are expressed in terms of M’', N', P', R’

as of the elements of the matrix K which are deter-

O’ +has lattar roenrecenting the anﬂ‘rn
(=1=1 wile esgments

i€ aatieXY ISpresStniing Wi QCrivat

mined simultaneously with the functions M, N, P, R, S themselves. For the vector ¢ = {g,,
0, 0,;} we have

A
<~

o= ; (An div uy 4 2pilu; 4 p (o X rotug)) +0 (1), r—oo

divuy, = if; (U1 cos ¢ + u, ,smq;) + uk s
rot uy =i (ilyliy, s — uk, o) -+ § (uh, 1 — iLytts, s) +
Kily (ug, 2 — Ur,1)s W = {10 Uy, o0 U}

The integrand function in (3.1) is of the order of unity when r—> o, since u, 6 ~ r-'/: when

r—oo0,z=const. If § is a lower hemisphere of radius R = ]/ 24y + 22> 1 then (pv is the

energy flux density across the hemigphere)

“““ P4 Akt Dt ol e SNe SfRmmmprt Sy
2nn
= § pvR*sinydyde (3.3)

For ¢y = n/2, R — o the asymptotic representation of u has the form

2 s
u= P u,+0(R?Y, R—x, u,=he™R

8=l
b.=—% K (01,5, 09,5) Q (0,5, Us, ¢} %,
Gy, s = —X, SN P COS @, Ay , = —X,SinPpsing, s =1, 2
We assume that when 2z-—> — oo, then the matrix X has the following representation:

2
K (0), 05, 2) ~ 2 K, (01,85) €%, z—>— o0

_ p (z) 0l o p(z) o
a=Ve—nd wi=lin o WS n S

Z=>—00
which is true, provided that A, yu,p tends, as z-+ —oo, to constant values or increase, at most,
according to a power law. We have

2
u=62105+0(3‘2), R—

= (And, + 2iux,b, + p (0 X rNeB*/R
dy = i, [sin ¢ (b, ; c08 @ + by, , sin @) + b, 5 cos P
v = i (b5 sin @ sin$ — b,, cosP) + j (b, , cosp —

!

*) Here and henceforth we use the results of the paper given in the previous footnote.



74

bs,3 €0s @ sin ) + k sin ¢ (b, , cos ¢ — b, sin @)] ix,
bs = {bs,lv bs.z» bs, 3}

Here u, 0 ~ R, R - o, therefore the integrand function in (3.3) is pvR?* ~ 1, R~ 0o. Thus,
by virtue of the asymptotic representations obtained, pv and prp are the energy densities of
the volume and Rayleigh waves, respectively. Since wu,, u, are the longitudinal and transverse
waves respectively, if follows that o, , = Y,m Im(g,, u;) and pv,s = Y,0 Im (g, u,) denote the energy
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densities of the longitudinal and transverse waves, respectively. In an elastic inhomogeneous
half-space the energy is transmitted, within the accuracy of up to the terms tending to zero
as R, r— oo, Aacross the side surface of the cylinder by the Rayleigh waves and through the
surface of the lower hemisphere by the volume waves. Indeed, it can be shown that for the
type of Rayleigh waves u~e<R, ¢>>0 when R—> o0,y >n/2 are valid, while for the volume waves
we have u ~ r?/+ when r-— o0,z =const. From this it follows that pur ~ r? 7r— 00, ppR? ~
eR R — o0,

The above computations show that the energy of the volume waves Ey calculated from (3.3)
by integrating the energy density of the longitudinal and transverse waves over the surface
of the lower hemisphere, coincides with the value of Eyobtained by integrating from zero to

% (formula (2.2)). Similarly, the energy of the Rayleigh waves E, calculated from (3.1) by
integrating the energy density of the Rayleigh waves over the side surface of the cylinder co-
incides with the value of Epj obtained as the sum of the residues (see (2.2}). In a =zone

situated at some distance from the source we can construct, with help of (3.1) and (3.3), the
expressions for the energy density of the volume p, and Rayleigh pp waves not only in the
direction determined by the normal to the surface under consideration, but also in the other
two directions orthogonal to this normal and to each other. To do this it is sufficient to
take the corresponding direction of the normal n in the expression for the energy density. The
resulting three quantities represent the projections of the energy density vector p on the
three directions chosen. The vector (Umov vector) determines the amount and direction of the
energy transmitted through the given point of the medium.

Fig.3 depicts the dependence of the energy density of the Rayleigh waves pp on the depth

s for r>1, in the same five-layer half-space as in Fig.2, o =05, g2 is the tangential
source and pp, is the vertical source. The solid lines correspond to rpp ; X 5%10%, ¢ = 0, the
dashed lines to rpp . X 5:10%, ¢ =m/2 and the dash-dot lines to rpp , X 10*. We see that the
energy flux density is greater in the more rigid layers (medium 2) than in the softer layers
(medium 1) and increases near the layer boundaries, while in a homogeneous half-space py de-
creases monotonously.

The results shown in Fig.3 are independent of r. Thi's is due to the fact thatat o =05
the elements of the matrix K have only a single pole yielding a significant contribution. If
the number of poles is greater than one, then the pattern of the energy density pp distribu-
tion over z is different for different r, although the total amount of energy Ep passing
across the side surface of the cylinder remains constant. Thus in Fig.4 the vectors 7pp are
constructed at various distances r for the tangential source and direction ¢ = w/2, The medium
here is a two-layer half-space and & =4, o = 0,5

The author thanks V.A. Babeshko, zZh. F. Zinchenko and N.V. Glushkov for assessing the
paper and for valuable comments.
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